Algèbre linéaire Exemples

Trouver les valeurs propres [[1,4],[1,-2]]
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Remplacez les valeurs connues dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 5
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Appliquez la propriété distributive.
Étape 5.2.1.1.2
Appliquez la propriété distributive.
Étape 5.2.1.1.3
Appliquez la propriété distributive.
Étape 5.2.1.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.2.1.1
Multipliez par .
Étape 5.2.1.2.1.2
Multipliez par .
Étape 5.2.1.2.1.3
Multipliez par .
Étape 5.2.1.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.1.2.1.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.2.1.5.1
Déplacez .
Étape 5.2.1.2.1.5.2
Multipliez par .
Étape 5.2.1.2.1.6
Multipliez par .
Étape 5.2.1.2.1.7
Multipliez par .
Étape 5.2.1.2.2
Additionnez et .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
Remettez dans l’ordre et .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 7.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Définissez égal à .
Étape 7.3.2
Ajoutez aux deux côtés de l’équation.
Étape 7.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Définissez égal à .
Étape 7.4.2
Soustrayez des deux côtés de l’équation.
Étape 7.5
La solution finale est l’ensemble des valeurs qui rendent vraie.